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Abstract

Luna, Eduardo; Pinheiro, Vitor (Advisor). Towards Building Digital
Twins Based in Systems of Systems. Rio de Janeiro, 2024. 53p.
Proposta de Projeto Final de Graduação – Departamento de Informática,
Pontifícia Universidade Católica do Rio de Janeiro.

This work focuses on the interoperability of systems for creating Digital
Twins (DTs), focusing on the complex challenges of uniting data from hetero-
geneous systems that use diverse API paradigms and data structures. Digital
Twins, as digital replicas of real-world systems. For that reason, their devel-
opment poses significant challenges, particularly in systems of systems (SoS)
architectures, where data originates from numerous, often heterogeneous and
incompatible sources.

This work proposes a method to integrate systems to achieve what was
done: a thorough literature review evaluates the state-of-the-art approaches,
two prototypes implemented using GraphQL, and three basic performance
tests to evaluate the benefits and limitations of the proposed approach. The
first prototype employs a fixed integrations approach, while the second lever-
ages an automated system composition algorithm using a JSON description
file.

The solution is designed to address challenges such as varying data struc-
tures, taxonomy differences, and different paradigms, like REST, gRPC, SOAP,
etc, all of which traditionally complicate system integration. By employing
GraphQL, the study achieves a more flexible data integration mechanism that
can handle different paradigms, enabling seamless querying and aggregation
across systems.

The research concludes by discussing potential optimizations and future
directions, such as incorporating other system descriptions like knowledge
graphs, ontologies or specific languages for enhanced data modelling and
improving query composition techniques.

Keywords
System of Systems; API Management; GraphQL; Digital Twins;

Automatic Code Generator.



Resumo

Luna, Eduardo; Pinheiro, Vitor. Em Direção a Construção de Gê-
meos Digitais Baseados em Sistemas de Sistemas. Rio de Janeiro,
2024. 53p. Proposta de Projeto Final de Graduação – Departamento de
Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Este trabalho foca em interoperabilidade de sistemas para a criação de
Gêmeos Digitais (DTs), com foco nos desafio de unificar dados provenientes de
diferentes sistemas que utilizam diferentes paradigmas de APIs e estruturas
de dados. Os Gêmeos Digitais são réplicas digitais de sistemas reais. No
entanto, seu desenvolvimento apresenta desafios significativos, especialmente
em arquiteturas de sistemas de sistemas (SoS), onde os dados originam-se de
inúmeras fontes frequentemente heterogêneas e incompatíveis.

Este trabalho propõe um metodo para integrar sistemas, para isso foi
feito: uma revisão aprofundada da literatura avalia as abordagens mais avança-
das do estado da arte; dois protótipos implementados utilizando GraphQL; três
testes básicos de desempenho para avaliar os benefícios e limitações da abor-
dagem proposta. O primeiro protótipo adota uma abordagem de integrações
fixas, enquanto o segundo utiliza um algoritmo automatizado de composição
de sistemas baseado em um arquivo de descrição em JSON.

A solução é projetada para lidar com desafios como variações nas estru-
turas de dados, diferenças de taxonomia e diferentes paradigmas, como REST,
gRPC, SOAP, etc, que tradicionalmente complicam a integração de sistemas.
Ao empregar o GraphQL, o estudo alcança um mecanismo de integração de
dados que consiga lidar com os diferentes paradigmas, permitindo consultas e
agregações entre sistemas com tecnologias diferentes.

A pesquisa conclui com uma discussão sobre possíveis otimizações e di-
reções futuras, como a incorporação de outros tipos de descrições de sistemas
como grafos de conhecimento, ontologias ou linguagens especificas para apri-
morar o modelagem de dados e o aprimoramento de técnicas de composição
de consultas.

Palavras-chave
Sistemas de Sistemas; Gerenciamento de APIs; GraphQL; Gêmeo

Digitais; Gerador automatico de código.
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1
Introduction

Data in the modern world emerges from various sources, often discon-

nected and asynchronous. This phenomenon is evident across a broad spec-

trum of environments, ranging from large-scale data centres to small micro-

controllers, making data omnipresent. Many devices are now interconnected

via web technologies, and the rapid evolution of internet infrastructure has

significantly enhanced this connectivity. A compelling concept that arises in

this context is the integration of data from diverse sources.

One domain that stands to gain significantly from such integration is

smart cities. By aggregating data from systems across an entire city, a mul-

titude of innovative solutions can be developed. These range from improving

day-to-day activities, such as transportation and dining, to addressing large-

scale challenges, such as urban planning. For instance, a citizen in a smart city

could identify the optimal method of transportation, or even a combination of

options, to travel from point A to point B without needing to understand the

origin of the data. Furthermore, the individual could seamlessly modify and

add new parameters to the query, such as arranging for a delivery to coincide

with their arrival at the destination.

The potential applications of data integration are not limited to smart

cities. In fact, it could be used in a broad spectrum of domains. For example,

in the oil and gas industry, a digital simulation of an oil platform could be

created by combining data from disparate systems managing various platform

components. For instance, a service that exposes images of equipment of an oil

platform could be used by another system to create a new system that could

calculate the corrosion of such equipment.

While integrating data from diverse sources at scale unlocks numerous

possibilities for innovation, achieving this in a reliable and straightforward
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manner poses significant challenges.

1.1
Challanges of Data Integration

A key issue in data integration is that systems often model the same

element differently or provide only partial descriptions. Variations in taxonomy,

data formats, or even currency usage can introduce complexities. Also, the data

of those systems may be scattered or unavailable in some cases. An example

is two airlines, one using the dollar and another using the euro. Integrating

both airline systems would require knowing what currency each system uses

and how to convert from one currency to another.

Another significant challenge is the diversity of data transfer protocols

and paradigms employed by different systems. Each paradigm serves specific

use cases, hindering the development of a framework that could integrate

various heterogeneous systems. An instance of that can be an old system that

uses legacy protocols trying to communicate with newer systems that use newer

and incompatible protocols.

Moreover, the creation of data exchange interfaces requires substantial

effort. Developers must learn various programming languages and technologies

to establish connections between systems. Without standardization, different

developers may independently create similar interfaces, leading to redundancy

and inefficiency. Although creating a unified standard for all systems is

possible, that solution could lead to restructuring pre-existing systems.

Furthermore, these interfaces often involve more than a few systems,

adding to the complexity and time required for their development. To illustrate,

a system that compares the price of computers would need to retrieve data from

various store systems to be able to create such comparisons.
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1.2
Objectives and Approach

The main objective of this work is to develop a flexible layer that can

integrate multiple heterogeneous web systems or data sources seamlessly and

without restructuring the system. To achieve that, this work addresses the

challenges of integrating systems through a comprehensive approach consisting

of two steps: Implementation and Evaluation.

In the implementation step, the goal is to generate a server to integrate

the mock-up systems of real-world applications from the oil and gas industry. It

was done employing two prototypes; the first prototype was coded to showcase

possible integrations between systems that were hard-coded. Hard-coded codes

are codes that do not change if any of the underlying system interfaces change.

The second goal is to generate the hard-coded code of the first prototype,

using a smaller example to minimize the complexity of the implementation by

employing a JSON file which describes the systems.

In the Evaluation step, the difference between hard-coded GraphQL and

the REST implementation against the created algorithms using a series of

tests to analyse the performance difference between generated, hard-coded,

and original APIs by calling the endpoints and comparing their response time.

There are two important facts to mention before continuing. The first

fact is that the prototypes for this work focus on developing a method for

system integration rather than exploring the optimal approaches to describe

the systems and determine the best strategies for combining them. The only

artefact defined for describing how to combine systems in this work is a

JSON file, which is the input of the server generation algorithm. Chapter 7

discusses what future work could be created about the description of systems

to complement this work.

The second fact is that this work does not propose creating a Digital

Twin but rather just a layer for communication between systems that can be

used to help implement Digital Twins.
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Chapter 2 introduces key concepts essential for understanding the re-

search conducted in this study. Chapter 3 describes the methodology used

to find and analyse related papers, providing a comparative analysis of their

findings. Chapter 4 specifies the conceptual model for the infrastructure and

how conceptually the algorithm works. Chapter 5 delves into implementing

the prototypes and the algorithm. Chapter 6 describes the tests to compare

the fixed code, the generated and the original APIs. Chapter 7 discusses prob-

lems encountered during implementation and future works. Finally, Chapter 8

summarizes the key conclusions drawn from this research.
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2
Theoretical Foundation

An interface is essential for accessing data from a system. On the web,

these interfaces are primarily implemented as Web Application Programming

Interfaces (APIs). An API comprises a set of interfaces, commonly referred

to as endpoints. To effectively manage APIs, a system must oversee various

aspects such as authorization and rate limiting. This management framework

is known as API Management (BONDEL; LANDGRAF; MATTHES, 2021).

API Management consists of two primary components: the API Gateway

and the API Portal. The API Gateway acts as a bridge between services and

the API, effectively decoupling the client interface. It intercepts all incoming

requests and routes them to the appropriate service while offering caching,

scaling, and load-balancing features. In contrast, the API Portal is a frontend

for both API and consumer system developers. It provides documentation,

developer guides, and a centralized endpoint catalogue for the services available

across multiple APIs (BONDEL; LANDGRAF; MATTHES, 2021).

API Management is frequently utilized in microservice architectures. Un-

like monolithic systems, microservice architectures consist of multiple decou-

pled systems. In this context, API Management orchestrates interactions be-

tween these systems. By facilitating connections among various systems, API

Management also enables the creation of Systems of Systems (SoS)—complex

systems formed by integrating multiple interconnected systems.

SoS architectures are commonly applied in scenarios such as a specific

type of Digital Twins called Systems of System Digital Twins. A Digital Twin

(DT) is a digital representation of a physical system designed to replicate real-

world behaviours by integrating and presenting up-to-date information from

the diverse technologies that constitute it (SHI et al., 2016; ANACKER et al.,

2022; OLSSON; AXELSSON, 2023).
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There are six levels of Digital Twin implementation, with each higher

level encompassing all the properties of the levels less then it. The levels are

described as follows:

1. At this foundational level, the digital twin represents only the underlying

constituent systems, offering a static representation without real-time

data integration.

2. Digital twins at this level integrate live data, like sensors and other

systems, enabling the querying of historical and real-time information

from them.

3. At this stage, digital twins gain the ability to adapt and evolve, often em-

ploying Artificial Intelligence models, advanced analytics, and statistical

methods to optimize system behaviour dynamically.

4. This level focuses on the digital twin’s ability to predict both short-

term and long-term system states, leveraging predictive modelling and

simulation techniques.

5. At this advanced level, the digital twin can recommend actions and

simulate various scenarios. It may incorporate knowledge bases and

decision-making assistants to aid in evaluating complex options.

6. The highest level represents autonomous digital twins capable of replac-

ing human operators or experts by making decisions and executing ac-

tions independently.

From level 2 onward, the implementation of the DT can be supported

by a unified communication bus that interconnects all constituent systems

since level 2 relies on systems being able to interact with all other systems.

This approach would allow seamless access to data and functionality from the

underlying systems (ALTAMIRANDA; COLINA, 2019).
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An API can use various paradigms, including REST, SOAP, and gRPC.

This work, however, focuses on the GraphQL paradigm. GraphQL was devel-

oped by Facebook in 2012 and is now maintained by the GraphQL Foundation

under the Linux Foundation. It offers a structured approach to querying and

managing data. Its key advantages include efficient data retrieval by allow-

ing precise data requests, preventing over-fetching or under-fetching, a sin-

gle endpoint architecture compared to multiple endpoints in other paradigms,

strong typing for data, and the ability to aggregate data from multiple sources

(GraphQL Foundation, 2024).

The architecture of GraphQL is built around two parts: the GraphQL

Server and the query language. The server is responsible for processing and

executing queries using three key concepts: a type definition language, a query

definition language and resolvers. The type definition language defines the

structures of outputs and inputs of queries by defining a schema. This schema

is loaded before the server is executed, and the GraphQL Specification does not

provide any tool to mutate it during execution time. This means every query

in GraphQL has its type defined statically. An example of the type definition

language can be visualized in Figure 2.1. The picture defines a query for getting

the Setor object given an ID.

The query definition language is very similar to the type definition but is

used to query the server. An example of a query for the Setor is illustrated by

2.2, in which a query is defined for fetching the Setor using the query getSetor

with the parameter S01 as Setor_ID.

The resolver functions are blocks of code responsible for retrieving data

related to certain queries. In the case of the getSetor, Figure 2.3 is a Javascript

implementation of such.

Like GraphQL, which has its own specifications, REST APIs can follow a

standard called OpenAPI. OpenAPI files act as descriptor documents, widely

used by REST API tools and libraries to provide comprehensive details about
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Figure 2.1: Schema definition

the API. These files include: endpoint paths, response codes, input and output

schemas, and parameter requirements, among other specifics. It’s important

to note that different API paradigms utilize distinct types of description files

(OpenAPI Initiative, 2024).

A knowledge graph (KG) is a sophisticated data structure frequently em-

ployed to model, organize, manage, and analyse heterogeneous and intricate

datasets. Owing to its graph-based architecture, it encapsulates a complex

abstraction of knowledge on a particular domain and delineates the interrela-

tionships among various data entities or data models (RAMONELL; CHACóN;

POSADA, 2023).

Ontology, originally a concept from philosophy, refers to the study of the

kinds and structures of objects, properties, and relationships in a domain of

interest. Like a Knowledge Graph, an ontology formally represents knowledge

within a domain, defining terms, their relationships, and rules that combine

them. It includes components such as concepts (entities), instances, relations,

and axioms, which are domain-specific truths or restrictions (LI et al., 2024).
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Figure 2.2: Query calling for getSetor

Figure 2.3: Resolver function for getSetor
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3
Related Work

This work embarks on a systematic search for the most relevant academic

papers to be reviewed. This systematic search is illustrated by Figure 3.1. The

search process was conducted using the Findpapers app (GROSMAN, 2024),

which allows users to create queries based on specific keywords to retrieve

academic papers. The data sources utilized by this library include ACM, arXiv,

bioRxiv, IEEE, medRxiv, PubMed, and Scopus.

3.1
Research Pipeline

Since the focus of this research is on System of Systems (SoS) and related

aspects of Interoperability, a query was created using two sets of keywords. The

first group included: Integration, Interoperability, Digital Twins, API Manage-

ment, Representational State Transfer (REST), GraphQL and Federated Sys-

tems. To address the SoS focus, a second group of keywords related to SoS was

created. A conditional AND was applied between these two parts, and only

papers published after 2019 were used.

The initial query returned a considerable number of papers. An additional

filter was applied to refine the results using a third group of keywords with

AND NOT conditions. This last group is comprised of authentication, security,

authorization, and cybersecurity. This filtering process reduced the number of

papers to 111.

Due to the inclusion of papers lacking DOIs or those restricted behind

paywalls, the pool of accessible papers was reduced to 48. A word count

analysis was conducted on the papers to ensure their primary focus was on

Systems of Systems and Interoperability. Articles were selected based on the

frequency of the terms "Interoperability" and "System of Systems" appearing

in the body text with similar prominence. Applying these criteria, the selection
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was narrowed down to seven papers, specifically: Pickering, Duke e Lim (2020),

Mittal et al. (2020), Mohsin e Janjua (2018), Weinert e Uslar (2020), Neureiter

et al. (2020), Cândea, Cândea e Staicu (2023), Anacker et al. (2022).

Since this systematic selection process was executed to find articles

focusing on SoS and Interoperability, it was also added two papers related

to the SoS, Interoperability and GraphQL (BORGES; ROCHA; MAIA, 2022;

LI et al., 2024), and a Survey about Digital Twins and System of Systems

(OLSSON; AXELSSON, 2023).

Figure 3.1: Systematic Research Diagram
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3.2
Paper Analyses

The paper Anacker et al. (2022) is a review of SoS. It helped create the

query for finding papers by improving definitions and keywords to find the

following research papers.

The study in Mittal et al. (2020) explores the development of SoS of au-

tonomous systems and simulation environments. There, it defines the frame-

work for simulation, experimentation, analytics and testing to integrate diverse

domains into a unified, multi-domain virtual environment. That integration is

done by using standardized data models and distributed simulation standards.

Unfortunately, those agreed-upon data models fix a vocabulary, meaning that

pre-existing systems might have to change their structure.

The work presented at Borges, Rocha e Maia (2022) introduces a solution

called MicroGraphQL for establishing API interfaces between systems using

GraphQL. Their approach uses three microservices: a GraphQL API Gateway,

a service for syntactically analyzing API description files called OpenAPI

Files, and a service that uses syntactical analyses for generating GraphQL

code. The objective of the code generated by MicroGraphQL is to identify

similarities with the OpenAPI to create services composed of multiple APIs.

While MicroGraphQL focuses on the syntactical analysis of the OpenAPI files

is a helpful solution, it still has many problems. Since anyone can define the

names of properties in different APIs, with completely different names, it will

not be able to identify such properties or combine them.

The paper Cândea, Cândea e Staicu (2023) focuses on integrating Inter-

net of Things (IoT) technologies to create an SoS, and it also highlights impor-

tant use cases of SoS. It discusses two frameworks, RoboFuse and Arrowhead.

Robofuse implements the Web of Things architecture, and it has most of the

API Mangement functionalities and some IoT specific. Arrowhead is a system

that ensures interoperability even in an automated environment by treating

every device as a service using Service Oriented Architecture (SOA). Although
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this paper defines a unified API for getting the data from IoT devices, it dif-

fers from the current study as it focuses on IoT interoperability. In contrast,

the current research is interested in any service and systems, encompassing a

broader scope beyond just IoT.

The paper Mohsin e Janjua (2018) reviews SOA-based architectures for

modelling SoS. They are similar to Cândea, Cândea e Staicu (2023) since

they both discuss SOA architecture to facilitate interoperability. They argue

that SOA-based approaches are not enough to address the unique demands

of SoS, such as managing emergent behaviours, ensuring runtime adaptability,

and maintaining quality attributes like performance and security. They also

highlight that the need for more robust tools and formal models is evident,

as these would allow architects to better design and simulate the intricate

dynamics of SoS since this process can become extremely complicated.

A paper that defines such formal models for APIs is Li et al. (2024). They

propose an ontology-driven GraphQL Server generation to enhance data access

and integration across heterogeneous sources and structures. That is done by

using a generic resolver to fetch data from different types of data sources and

by using its Ontology to describe entities, relationships and attributes of data

sources. It differs from Borges, Rocha e Maia (2022) since it does not rely

upon syntactical analyses. It is a very robust solution, however, it has a few

drawbacks, like limited query features, optimization, and model maintenance.

Just like Mohsin e Janjua (2018) the papers: Neureiter et al. (2020),

Weinert e Uslar (2020) and Pickering, Duke e Lim (2020) focus in modeling.

Pickering, Duke e Lim (2020) and Weinert e Uslar (2020) are also from the

domain of agriculture. Pickering, Duke e Lim (2020) identifies the challenges

of siloed and closed systems, highlighting how these issues hinder effective

collaboration and scalability. Through a structured, five-stage SoS discovery

process, the paper emphasizes practical solutions to foster interoperability.

This process uncovers opportunities for capability reuse, data integration,
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and hardware standardization, which can improve system adaptability and

scalability. The paper also outlines forward-looking recommendations, such as

leveraging digital twins and augmented reality to enhance data sharing and

decision-making.

The paper Weinert e Uslar (2020) proposes a conceptual model inspired

by thriving frameworks such as the Smart Grid Architecture Model, aiming to

harmonize information exchange across diverse and heterogeneous agricultural

systems. It emphasizes the creation of an open vendor-neutral communica-

tion framework that allows various stakeholders to interact seamlessly through

standard interfaces and service specifications. It also proposes the components

of Service Registry and Identity Registry to manage services and trust rela-

tionships effectively.

Lastly, the paper Neureiter et al. (2020) tackles the challenges of inte-

grating diverse systems like Smart Grids, Automotive, and Smart Cities by

defining and extending the concept of Domain Specific Systems Engineering

to SoS. It highlights improvements in enabling systems from different domains

to work together by addressing interoperability and compatibility issues. The

key advancement is creating a unified framework that aligns domain-specific

models, processes, and tools, making managing complex interactions and de-

pendencies across systems easier.

3.3
Comparison

Before completing this analysis, a comparison table was devised to

compare the papers, and the following 6 questions were formed.

1. Q1: Does it convey about joining data from multiple sources?

2. Q2: Does it propose any model describing the systems and how to

integrate their data?

3. Q3: Does the paper uses GraphQL?



15

4. Q4: Could existing systems need to be modified to use this approach

effectively?

5. Q5: Does it provide a language to query multiple data sources simulta-

neously?

6. Q6: Does the paper focus on modelling or implementation?

Q1 outlines the importance of combining data from multiple sources and

not only exposing them in a unified way. Since the systematic research found

papers about modelling, question Q2 tries to identify papers which define a

way to model the SoS as a whole, going from abstract modelling to a highly

specific way to model the systems, its data, and how to operate together.

Q3 tries to identify which papers use GraphQL since some of the papers

use them.Q4 tries to define which approaches can be easily decoupled from

integrating those systems. Q5 defines our final goal, that is, to be able to create

a single query that adds data from multiple sources.

Table 3.1: Comparison of researched papers.

Q1 Q2 Q3 Q4 Q5 Q6
Anacker et al. (2022) NA No NA NA NA NA

Borges, Rocha e Maia (2022) Yes No Yes Yes Yes Implementation
Cândea, Cândea e Staicu (2023) No No No Yes No Implementation

Li et al. (2024) Yes Ontology Yes No Yes Both
Mittal et al. (2020) Yes No No Yes No Implementation

Mohsin e Janjua (2018) Yes No No Yes No Modelling
Neureiter et al. (2020) Yes DSSE No Yes No Modelling

Pickering, Duke e Lim (2020) Yes SysML No Yes No Modelling
Weinert e Uslar (2020) Yes No No Yes No Modelling

After analyzing Table 3.1, some interesting conclusions can be made.

Most papers about modelling do not go as deep as talking about the data

itself of each system. Even with the remaining modelling papers that talk

about the data, they are highly heterogeneous in their modelling types.

But the main takeaway from this table is that besides Cândea, Cândea e

Staicu (2023), which is a model-focused paper, the only two GraphQL papers,
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Li et al. (2024) and Borges, Rocha e Maia (2022) explicit defines a language to

query multiple data sources. The only paper that defines a system that would

not need to be alter any other system to integrate them is Li et al. (2024).



17

4
Conceptual Model

The conceptual infrastructure architecture is illustrated in Figure 4.1.

This architecture is structured into three main layers: the Micro-Services Layer,

the API Management Layer, and the External Layer.

– Micro-Services Layer: This layer includes all applications and services

managed by the organization. These micro-services provide the founda-

tional data and functionality that other systems rely on.

– External Layer: The outer layer consists of applications or systems

that consume data provided by the organization’s services through the

API Management Layer.

– API Management Layer: This layer is what this work proposes to

generate. It serves as the unified communication interface. It dynamically

creates GraphQL servers to facilitate seamless data integration and

querying across multiple APIs. Both the External Layer and the

Micro-Services Layer can access the API Management.

The primary function of this work is to generate the API Management

Layer, as detailed in Figure 4.2. This approach is inspired by the methods

proposed in Borges, Rocha e Maia (2022), Li et al. (2024), aiming to create a

unified communication layer capable of querying data composed from multiple

APIs and assisting the implementation of the level 2 of a Digital Twin. To

achieve this, the system dynamically generates a GraphQL server that serves

as a centralized interface for managing and unifying data queries across various

APIs.

The reason for using a GraphQL implementation as the API Management

is that it has the capability to be a unified access point for all underlying

systems. Additionally, it can be potentially used to compose new queries using

the existing query, which would assist interoperability.
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Figure 4.1: Conceptual Model

Similar to the approach in Borges, Rocha e Maia (2022), the system

relies on service description files to automatically generate the GraphQL types

definitions and resolver function for each API. The GraphQL code for querying

individual APIs using the GraphQL API Management is referred to as Atomic

Services.

Additionally, the code generator would also need a description file for

composing new queries using the Atomic Service. The Code Generator uses

a JSON description file as its input. An example of such a JSON file is in the

Appendix A.1.

In future research, a knowledge graph could be used to create more

complex queries that span multiple systems. This is achieved by mapping

which queries and attributes from one API are linked to queries and attributes

in other APIs, facilitating a higher level of data integration. These integrated
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services are referred to as Composed Services.

The Semantic Description Parser is not implemented in this work

but, conceptually, would play a role in translating a KG or any other descrip-

tion of composition between systems, into the input for the Code Generator

Service. Therefore, it will be discussed as part of future work in Chapter 7.

Instead, this work will concentrate on defining the Code Generator Service

(CGS) and its implementation, as detailed in the following Chapters.

Figure 4.2: Code Generation Process for the API Management Layer
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5
Implementation

This chapter describes the implementation of the conceptual model

described in Chapter 4. A series of mock-up services were developed to address

the main use case in the oil and gas industry. These five Atomic Services are as

follows: Environ, Plan360, Busca360, Cronos, and Algo360. They were derived

from five real-world applications from the oil and gas domain.

Environ is a system for integrating and visualization of multi-domain

engineering data for building and analysing scenarios of industrial plants using

3D models. It is integrated into multiple data sources to support scenario

analyses and decision-making. Figure 5.1 illustrate the visual interface of

Environ.

Figure 5.1: Environ frontend

Plan360 is a system for digitization and remote visualization of assets

through 360º images, integrated with point clouds and 3D models. Its main

goal is to assist in planning maintenance on industrial plants, visual inspection,

and other visual tasks. The platform enables immersive navigation, georefer-

enced annotations, and automated comparisons over time, allowing for better

monitoring of asset conditions. With AI-driven insights and telemetry, Plan360

enhances operational efficiency, optimizes inspection processes, and supports
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data-driven decision-making for industrial asset management. Its dashboard

can be visualized through Figure 5.2.

Figure 5.2: Plan360 frontend

Busca360 is an intelligent search tool for inspection and maintenance

records of equipment, compliance, and equipment safety, utilizing Big Data

and Natural Language Processing (NLP) solutions. The system provides a

database that connects data from multiple sources and aims to answer complex

queries and correlate information across different sources (IZQUIERDO et al.,

2024).

Cronos and Algo360 are systems for dealing with corrosion. Algo360 is a

system capable of distinguishing intact surfaces from those with coating degra-

dation to estimate the corrosion index. Cronos is a tool designed to optimize

inspection and painting plans while simulating equipment and pipeline cor-

rosion. Cronos uses machine learning techniques to predict the criticality of

corrosion and how it will evolve. By doing that, Cronos optimizes the power

plant painting team.

Based on those systems, the following real-world use case was devised:

"Which sectors and equipment (TAGs) need the painting on platform P77 to

complete the painting plans and all painting RTIs to maximize efficiency?".

To simplify, building a proof of concept of the conceptual model, the systems

were reduced to mock-up systems with the following objectives:
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1. Environ: Exposes engineering data and TAG data of each Sector.

2. Plan360: Exposes images of each TAG.

3. Busca360: Exposes RTIs of each Sector.

4. Cronos: Exposes inspection and painting plans of each Sector.

5. Algo360: Exposes IRevest data of each Sector.

In Figure 5.3, the output of each system and its properties can be

observed. Each service with the PK is the primary key of the system. These

primary keys can appear as foreign keys in other systems, enabling the

integration of data across systems. An example of such an approach is the

Environ and Cronos APIs. The Sector ID serves as the primary key in Environ

and as a property in Cronos. Notably, in the Cronos API, the property is a list

of Sector IDs, and in the Environ API, each instance has only one identifier

Sector ID.

Two prototypes based on these services were developed. The first proto-

type was devised to show the multiple transformations that can be made to

each service’s data structure to merge data seamlessly. For its complexity, it

uses a fixed server code across five systems.

The second prototype has two implementations. The first implementation

was created using a fixed code, and the second used the algorithm shown

in Chapter 4 to generate the GraphQL code dynamically. To minimize the

complexity of generating the GraphQL code, since there are many different

ways to join data, only two types of transformation were created based on only

three of the five systems: Environ, Algo360 and Cronos. Another reason for

the creation of those different prototypes was to create joins between multiple

paradigms, which are not in the first prototype. The repository with the codes

for the services and the server is in Luna (2025).
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Figure 5.3: Complete use Case

5.1
First Prototype

For the implementation of the use case, the API management was

developed using a NodeJS library called Apollo GraphQL. The Environ and

the Cronos also use NodeJS with the ExpressJS library, and its API exposes

a JSON file. The Algo360 and Busca360 also expose a JSON file but are

implemented in Python with the FastAPI library. Plan360 is the only one

that differs in data persistence. It uses SQL Lite with JavaScript’s ExpressJS

library. Docker will be used to encapsulate each micro-service. The complete

infrastructure is shown in Figure 5.4 (Express.js, 2024; Apollo Graph Inc.,

2024; RAMíREZ, 2024; Docker, Inc., 2024).

Also, for this use case, each application has two types of queries. One

query retrieves a single instance by primary key, while the other retrieves a list

of instances by a list of keys or all instances if no keys are provided. If a list

of keys is provided or if the parameter is null, the query returns all instances

of the API. An exception is the Plan360 API, where TAGs are used as foreign

keys rather than primary keys. Instead of those two queries, Plan360 exposes

a single endpoint that runs an SQL query.

To solve the problem of combining Plan360 data with other services, a

new Atomic Service is defined inside GraphQL. Treating the TAGs as primary
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Figure 5.4: Prototype 1 Infrastructure

keys can create those two queries that were previously mentioned. Environ

and Busca360 also have a similar problem. To join the Tag properties, a new

Atomic Service is created to make TAG the Primary Key. All other APIs also

have an Atomic Service for each of them, but in their case, their endpoints do

not need to be changed to be created inside GraphQL.

With all the Atomic Services created, their data can be combined by

creating new services. Seven new services were created within GraphQL for

this prototype: Environ Equipment, Plan Photo, Busca Equipment, Plan

Equipment, Ativo Equipment, Ativo Sector, and Ativo Painting Plan, as shown

in Figure 5.5. Plan Photo, Environ Equipament, Busca Equipament and Plan

Equipament are the Atomic Services mentioned earlier. By uniting them, Ativo

Equipment is created, and in the same way, Ativo Sector combines Environ,

Algo360, and Ativo Equipment. Finally, combining Ativo Sector with Cronos

results in the Ativo Painting Plan, directly addressing the use case question.

A query call is illustrated by Figure 5.6. That query was run using the

API Portal of Apollo GraphQL, but another application can also call it. An

example of such using NodeJS was created with the service API Consumer.
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Figure 5.5: GraphQL Service Composition Tree
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Figure 5.6: Query for the first prototype

5.2
Second Prototype

This second prototype differs slightly from the one in Section 5.1 for

a few reasons. This prototype aims to replicate the data structure that the

automatically generated server will use and compose.

Plan360 posed a challenge in the first prototype due to its direct use

of SQL queries. Automatically creating queries and types for this setup is

complex. GraphQL’s reliance on fixed types makes it challenging to handle

SQL-generated tables, which can vary in structure through joins and unions.

It is important to note that it is possible to solve that problem.

Another point to consider is that it is interesting to keep the goal of

answering the use case question defined in Section 5.1. However, a problem

emerges: An important part of the algorithm for generating the GraphQL

Server relies on description files, and the library ExpressJS does not generate

that file natively, but the FastAPI does. Since Cronos is of foremost importance

in developing the final response, it was rewritten in Python for this second

prototype.

Since Algo360 was already written using the FastAPI library, it was kept

for the second prototype. Ultimately, our second prototype has Algo360 and

Cronos APIs as its Atomic Services. The system composition in this prototype

is much simpler than in the first. It only generates a single Composed Service

called Plano Ativo, which uses the Setor ID list from Cronos to integrate with
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Figure 5.7: GraphQL Service Composition Tree for the second prototype

the Setor ID primary key of Plano Ativo. That is illustrated by the 5.7.

Another difference is in the queries. This setup employs a unified query

to retrieve data, which functions similarly to the two-query setup. If you send

a single key as input of the query, it returns the object of that key. If you send

null, it gathers all instances of the object, and if you send a list of keys, it

returns all elements of those keys. From that, an interesting problem emerged.

That problem is discussed in Section 7.4. For now, it is necessary to know that

GraphQL can not express exactly that query, but it can express an equivalent

query, which returns a list with only one object in the specific case of getting

only one object and all other cases just the same as before.

Even though a single query in GraphQL could be implemented expressing

the equivalent of this unified query, it was decided to create two queries the

same way the first prototype did. A return of such a query can be visualized

in Figure 5.8.

5.3
Code Generator Service

Before describing how the Code Generator Service (CGS) operates in

the prototype from Section 5.2, a modification was made to demonstrate
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Figure 5.8: Query return of second prototype

CGS’s ability to integrate data across different API paradigms. The Environ

service, previously using ExpressJS, now utilizes Apollo GraphQL to expose

its data directly since ExpressJS does not generate OpenAPIs files natively.

To illustrate CGS’s ability to combine data from different paradigms, a new

query, Setor Ativo, was created. This query is illustrated in Figure 5.9.

As mentioned in Chapter 4, the CGS relies on the description files and

a JSON file for gathering information to generate the server. The FastAPI

generates a type of description file called the OpenAPI file, which describes

the endpoints and types. GraphQL, on the other hand, does not require an

explicit description file because every GraphQL server supports introspection.

GraphQL introspection is a special type of query that returns information

about queries, schema, and other information.

To make it a bit easier to implement, the API Management of this

prototype does not use Apollo GraphQL. The justification for that is the

use of two frameworks, the GraphQL Hive and GraphQL Mesh. Chapter 7.2

examines the reasons for that change, yet for now, all that is needed to know

is that GraphQL Mesh can generate GraphQL Resolvers, Queries and Types

automatically using some specific types of data source description files, a few

examples are: OpenAPI, GraphQL, gRPC, and others, assisting in the creation

of Atomic Services (The Guild, 2024).

For Composed Services, as discussed in Chapter 4, it relies on using a
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Figure 5.9: Second prototype Composition tree variation

JSON file. However, the input of the CGS is a specific JSON file. However,

future research could get from the KG to the input of the CGS, and a parse

could be created to translate the Knowledge Graph to the JSON.

5.3.1
The input file

The JSON input for the GraphQL Code Generator Service contains three

main properties: atomic, composed, and rename. Each property serves a

specific purpose in configuring the API management layer. The JSON file can

be viewed in the Appendix A.1

– atomic: This property defines a list of Atomic Services. Each service

requires: API type that specifies the API type, which currently supports

OpenAPI or GraphQL; endpoint the endpoint URL for accessing the API;

Name: The identifier for the API; and source which is a reference for

the description file.

– rename: Specifies a string replacement rule that changes all substrings

with a specified name in the GraphQL type and queries to a designated
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string. This feature standardizes naming across APIs.

– composed: This property defines the operations to compose multiple

services. Currently, it supports two types of operations, the List Unit

Union that requires a list of foreign keys on the left side to generate a

new list of items that includes objects from the right side. And the Unit

Unit Union that performs a set union of properties from two objects

into a single object, such as combining data from Environ and Algo360

for Setor Ativo.

Each composition operation under composed includes the following

required sub-properties:

- query name: Defines the name of the new query created by the

composition.

- query signature: The GraphQL schema string defines the input and

output of the new query.

- new type: An object specifying the structure and name of the new

type to be associated in GraphQL.

- parameters: A string that defines how the query’s parameters are

structured.

Both the left and right operands in a composition operation include

additional sub-properties:

- return list: A boolean indicating whether the query should return a

list or a single item.

- name: The name of the query being referenced.

- params: Parameters for the query.

- attributes: The specific attributes within the query, as GraphQL

requires explicit definition of returned fields.

- keys: The properties used to join objects. This is defined as a path

array, where each item represents a level in the object hierarchy, with the

final element being the property used for integration. For example, in the
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Figure 5.10: Code Generator Service

Setor Ativo composition, Setor ID serves as the key connecting Algo360

and Environ.

Figure 5.10 illustrates the process of generating Composed and Atomic

services using the described JSON file.

5.3.2
Creating Atomic Services

With the input file defined, the code generator service passes to the

GraphQL Mesh library to generate all Atomic Services. Each atomic item in

the JSON list of atomic attributes generates what the GraphQL Mesh calls a

subgraph. However, two key challenges arise during this process.

The first comes from the FastAPI library, which creates some validation

objects in their OpenAPI files that GraphQL Mesh cannot understand, to solve

that, it is necessary to remove them. Regardless, since GraphQL Mesh cannot

load it directly from memory, the server must save the OpenAPI file locally and

then give it to GraphQL Mesh, and that is the reason why, in the Appendix
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A.1, there is a source property only in the Rest Services, that property serves

only to GraphQL Mesh know where the OpenAPI of each Service is stored.

The second problem is the problem raised in Section 5.2, that queries

that return a list of items or items cannot be generated. To address this, the

OpenAPI file must be updated to explicitly define return types as lists wherever

a list or unit conflict arises. In contrast, Apollo GraphQL does not face these

limitations and, therefore, does not require the inclusion of a source attribute.

After resolving these challenges, GraphQL Mesh generates a unified

GraphQL Schema file containing types and queries for all APIs registered.

For GraphQL Mesh, the resolver functions do not need to be created. The

reason for that is discussed in Section 7.2.

To incorporate a new Atomic Service, the following elements are

required: a valid API, its corresponding endpoint, a designated name for the

API, and a valid API description file. This information should then be included

within the atomic property of the JSON file.

5.3.3
Creating Composed Services

To create the Composed Services, GraphQL types, queries, and resolvers

need to be implemented. The types and queries are defined by updating the

GraphQL Schema file with the necessary information. That information is

available in the JSON file, specifically in the new type, query signature

and parameters within the composed property.

To create new resolver functions for the Composed Services, adding them

to the GraphQL Hive resolvers list is necessary. A Javascript function with the

same signature as the GraphQL Resolver function must be created for each

new query. To solve this problem, a Javascript function that returns a resolver

function was created for each type of operation.

Each resolver function created by the Composed Service was designed to

use the inner GraphQL query executor of GraphQL Hive’s server to interact
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with each API. This approach avoids defining multiple API call definitions

regardless of the API paradigm. To invoke a GraphQL query, it is necessary to

know the shape of the return type of that query. It is important to note that

GraphQL can figure that out for you, which is discussed in Section 8.1, but

that was not used for this implementation. The return type shape is defined

in the attributes property within the left or right properties.

Another property that is necessary to know to call the query is the name

of the query, which can be found inside either left or right, in the name.

The last item necessary to run GraphQL queries is the parameters, which are

defined in the params and also in the left or right property.

Calling both left and right queries alone is insufficient; their data must

be combined. To achieve this, the keys property is required, specifying a

reference to the equivalent property in both queries.

The only property left is the return list, which is used to mitigate the

problem of a single query that either returns a list or a single object. When

composing the final response, the function cannot understand if the query

returns a single object or if it just returned a list with a single object. This

property guides the composition function in treating the query’s return value

as a list or a single object, ensuring accurate response formatting.

To add a new Composed Service, provide the composed proper-

ties—such as queryName, querySignature, operationType, items, and oth-

ers—in the JSON file. These details should be included within the compose

property of the JSON file.

5.3.4
Querying the Server

After implementing everything described by Subsections 5.3.2 and 5.3.3,

a GraphQL server can be generated. Figure 5.11 illustrates a query of type

LIST UNIT UNION, specifically the getPlanosAtivo query. In this example,

the query returns a list with a single item instead of an object, despite only
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Figure 5.11: Query getPlanosAtivo

Figure 5.12: Query getSetoresAtivo

providing one parameter, as expected. Again, in this second example of query,

illustrated by Figure 5.12, with the getSetoresAtivo, the same can be observed

as the Figure 5.11.
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6
Evaluation

6.1
Technical Specifications

A series of tests were designed to evaluate the difference in the perfor-

mance of those two implementations. Each test uses the mean of 1000 queries

for each individual part of the test.

All tests were done using docker to virtualize each application (REST

and GraphQL). The computer specifications used to run the tests used an

Intel CPU i7-8750H 4.100GHz, with 16GB of RAM, using Ubuntu 22.04.5.

6.2
Tests

The first test compares the response time of the generated code with the

hard-coded query for retrieving all Ativo Plans, which are composed of Cronos

and Algo360, using the APIs described in Section 5.2. This test was designed

Figure 6.1: First performance test
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to assess whether there is a performance difference between generated and non-

generated code. For simplicity, this test uses twice the number of instances in

Plan360 as in Cronos. The test ran with 10, 50, 100, and 500 Cronos instances.

As illustrated in Figure 6.1, the difference in response time between the two

implementations for a smaller number of instances is negligible.

The second test evaluates whether the performance difference between

the two API management implementations persists with an increasing number

of Algo360 instances. In this case, the number of Cronos units is fixed at 10,

while the number of Algo360 instances increases by 5, 10, 25, 33 and 50 for

each Cronos instance. As shown in Figure 6.2, queries with a higher number

of compositions take longer to complete. This is because, for queries of type

LIST UNIT UNION, a query to Algo360 is made for each item in each list

of Cronos. It was also demonstrated that the generated code is slower as the

number of instances for composition grows.

The third and final test measures the difference in performance between

calling the endpoint directly, using the hard-coded API management, and using

the generated API management. In this test, Cronos was queried with 50, 100,

Figure 6.2: Second performance test
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500, and 1000 instances. As expected, the REST API is faster than using

GraphQL to fetch REST data because GraphQL introduces an additional

processing layer. This difference is evident in Figure 6.3, which shows that the

REST API is 1.7 times faster than the API management for 1000 instances.

This evaluation demonstrates that GraphQL introduces at least some

latency in response times. However, it is noteworthy that the generated

server performs comparably to the hard-coded server when handling a small

amount of data. The most significant limitation of this version of GQS is its

performance when joining large datasets. Potential optimizations to mitigate

this issue are discussed in Section 7.5.

Figure 6.3: Third performance test
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7
Discussion

As detailed in Chapter 5, CGS presents numerous opportunities for

improvement. This chapter discusses potential enhancements, limitations, and

avenues for future development to extend and refine CGS.

7.1
The input file of Code Generator Service

As shown in Section 5.3, the JSON file that works as the input of the

Code Generator is quite complex and extensive. However, some of its com-

plexity and extensiveness are due to a simplification of coding the GraphQL

Code Generator. For instance, the query signature can be represented as a

concatenation of a query name and a return type. Although the return type is

not defined, it should be simpler than building the whole signature.

A further challenge lies in handling items within the GraphQL Code

Generator. Firstly, the UNIT UNIT UNION could be adapted to support an

arbitrary number of objects. Secondly, the query object theoretically could

be programmed only to need the key property and the name property. Pa-

rameters, attributes, and return lists could be inferred automatically through

introspective queries that extract all requisite data directly from the server.

Nevertheless, future work could improve the GraphQL Code Generator as a

whole, from minimizing the input file to adding the feature to compose queries

with multiple inputs.

7.2
GraphQL Implementations

From the hard code to the generated server from prototype 2, a change

was made to use GraphQL Hive instead of Apollo GraphQL. There are a vast

amount of GraphQL implementations in multiple languages, each one with

its strengths and its problems. Initially, Apollo GraphQL was chosen since it
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seemed to be the staple for JavaScript implementations of GraphQL. It has

many interesting features, like API Federations, a tool for composing GraphQL

Servers. The main problem with that was discovered later: that feature is not

open source and needs to be paid for.

Other competing libraries, such as WunderGraph GraphQL and Straw-

berry GraphQL, are entirely open-source. In my research for GraphQL Server,

I found a set of GraphQL helping libraries from a company called The Guild.

They focus on creating open-source GraphQL solutions and are backed by the

GraphQL Foundation. One of those libraries is GraphQL Mesh.

GraphQL Mesh implements parsers from a list of data sources description

files (OpenAPI, gRPC, mySQL, Neo4J) to GraphQL code. Since this aligns

with the requirements of Atomic Services, GraphQL Mesh was selected, as it

simplifies the integration of additional data sources.

Although it generates all the necessary code for executing the GraphQL

code, it is not server-agnostic. GraphQL lets all its implementations define

directives, which can be used to execute custom functions other than just the

resolver. Unfortunately, those directives are often tailored to work within the

server implementation, so they do not work in all GraphQL servers. Currently,

GraphQL Hive Server is the only GraphQL implementation that can execute

such directives.

Future research should focus on designing a generic framework for the

Atomic Service Generator, enhancing compatibility across diverse GraphQL

server implementations. Since most GraphQL Server implementations need to

have queries, types and resolvers, a solution could be devised to generate types

and queries for any GraphQL server and a solution for generating resolvers for

a specific programming language.

GraphQL Mesh also has a transformer feature that lets you transform

the data. Since the Atomic Service Generator is already implemented in

a non-server agnostic way, it was decided to be developed without using
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Figure 7.1: Recursive CGS

the transformer feature of GraphQL Mesh. That way, the Compose service

generator could be developed with any Atomic Service generator.

Future research could delve deeper into comparing GraphQL implemen-

tations. At the time of this study, no comprehensive review of GraphQL imple-

mentations was identified. Existing literature primarily focuses on comparing

various aspects of GraphQL itself but does not specifically address the differ-

ences or performance of its implementations. The main example of that is the

paper Mera et al. (2023).

7.3
Scalability for Encapsulation

An idea that could arise from Section 5.3 is since CGS can generate a

GraphQL Server using pre-existing GraphQL Servers, that in theory, you could

connect a CGS instance to another CGS instance, this process is illustrated

by Figure 7.1. Let G1 and G2 be two instances of CGS, with two separated

composition descriptions; if you want to connect G1 to G2, it is possible to

create a third CGS instance called G3 that has its own separated composition

description that connects G1 and G2. This approach enables G1 and G2 to

be developed independently. Future research should assess the scalability and
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performance impact of such recursive configurations.

7.4
GraphQL Union and Type Grammar

Previously, in Section 5.2, the issue of creating a unified query in

GraphQL to retrieve all, some, or a single instance was highlighted. To

understand the root cause of this limitation, an analysis of the GraphQL

Specification was conducted, and the relevant grammar rules were extracted

from the current specification and are shown as follows:

UnionTypeDefinition → Descriptionopt union Name

Directives[Const] opt UnionMemberTypesopt

UnionMemberTypes → UnionMemberTypes | NamedType

UnionMemberTypes → = |opt NamedType

Type → NamedType

Type → ListType

NamedType → Name

ListType → [ Type ]

The rule Type is used to refer to any GraphQL type possible. Therefore,

[Type] is a valid type for Type. Regardless, NamedType can only generated

by the usage of the Name token, which represents basic types such as Strings,

Float, or non-nullable objects. Consequently, it does not allow the definition

of a GraphQL type that combines a list and an object.

7.5
Optimizations

As shown in Chapter 6, the response time increases as the number

of compositions grows. This is because the query for the left item must be
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completed before initiating the query for the right item. Additionally, in the

case of the LIST UNIT UNION, a new query is generated for each element

in the array. While this issue likely cannot be entirely eliminated, it can be

mitigated through optimizations. For example, the query for the right item

could be initiated concurrently while receiving the left item. Another potential

optimization is to replace individual queries for each item with a single query

that retrieves all elements of the left composition at once, thereby reducing

the number of separate queries.

7.6
Benefits and drawbacks

After the development, it is clear that the process to add new Atomic

Services and Composed Services is straightforward after improving main-

tainability and usability compared to the Li et al. (2024), even when consid-

ering the refinement that can be done for the JSON file, described at Section

7.1.

Unfortunately, only two types of composed queries can be created for this

work. Further research could investigate the creation of more compositions,

and further data transformations can extend the current implementation. An

example of a new type of query that can be developed is the one used in Section

5.1 to serve Photos from Plan360.

Another limitation of this implementation is its inability to compose

multi-parameter queries, as all queries are limited to a single parameter. This

is because parameters must be mapped from one query item to another.

While it is not possible to generate all types of compositions using only

those two types of compositions, the server can be extended in future versions

to support additional compositions types and enable the creation of custom

compositions. It is important to highlight that implementing complex Level 2

DT cannot rely solely on these composition methods but rather just be a tool

for building them.
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A remarkable benefit of this approach is that it can combine hetero-

geneous systems using different paradigms without the need to change the

internal structure, even if some API Gateway implementation don’t generate

their description file, which could be created without changing the internal

structure, thus generating the entire server seamlessly.

Another notable benefit of this approach is its capacity to serve as

a unified API for all defined systems. Consolidating all endpoints into a

single API management framework eliminates the redundancy of duplicated

interfaces, streamlining system interactions.
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8
Conclusion

This research proposed a tool for building level 2 or higher Digital Twins

by addressing the challenge of interoperability in Systems of Systems (SoS), of-

fering new perspectives on composing and utilizing data without compromising

existing systems. This was achieved by combining the capabilities of GraphQL

and the description of the integration of APIs, which presented a novel frame-

work for defining a unified API that integrates all endpoints of an SoS and

facilitates the composition of new queries derived from those endpoints.

The literature review demonstrated that this research was built on a solid

foundation, with the works of (LI et al., 2024; BORGES; ROCHA; MAIA,

2022) serving as key inspirations. The ideas from these studies contributed

to the development of a generic solution to address some challenges of their

research, like the lack of usage of a better system than just syntactical analyses

or a method that could eventually simplify the description of their systems.

8.1
Future work

Chapter 4 defined the Semantic Description Parser, even though its

development using any type of parser to JSON was set aside, the implications

of such must be discussed. Firstly, the goal of the parser would be to map

how to connect distinct APIs that could be modelled in various ways, as long

as its parser could generate the JSON input of the GraphQL Code Generator

Service. Since there was no Semantic Description Parser other types of

Composed Service Descriptions could be employed. In Borges, Rocha e Maia

(2022), they compose new queries using syntactical analyses as an example,

but the powerfulness of this implementation is that it could be achieved not

relying on syntax but rather in a description.

For those descriptions, ontologies, like the one outlined in Li et al. (2024),
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offer a promising approach. Another potential solution involves developing a

domain-specific language (DSL) tailored to describing and defining service in-

tegrations. Additionally, creating a Knowledge Graph to represent the rela-

tionships and integration pathways between services could provide a robust

and flexible alternative.

A potential solution to further simplify the creation of composition

description files is to partially generate them using the existing API description

files. That would facilitate the creation of certain sections of the composition

description, leaving only the composition itself to be defined manually. This

eliminates the need to repeatedly specify detailed type structures, reducing

complexity and effort.

A few other future research were defined in Chapter 7 as direct improve-

ments of the current work, like the improvement of the input file, the creation

of more types of composed queries and further optimizations.

8.2
Closing Remarks

The prototypes made for this work exemplified how uncomplicated it

would be to connect two APIs using this approach and how, in future research,

that could even be more simplified. However, there are still many challenges,

like the actual best implementation of GraphQL to be used or optimizations.

Even though the performance results varied—showing improvements in

some scenarios and limitations in others it is significant that the initial version

of CGS managed to achieve comparable performance to hard-coded solutions

in two of the tests. That demonstrates the promise of the proposed framework

while highlighting areas for potential optimization and improvement.

Overall, this study has significantly enhanced my understanding of APIs,

particularly GraphQL, as well as concepts such as Systems of Systems and

Digital Twins. Moreover, the research opens avenues for further exploration,

as discussed previously, and hopefully, this contribution marks a notable step
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towards the interoperability of Systems of Systems.



47

9
Bibliography

ALTAMIRANDA, E.; COLINA, E. A system of systems digital twin to support life
time management and life extension of subsea production systems. In: OCEANS
2019 - Marseille. [S.l.: s.n.], 2019. p. 1–9. Cited in page 6.

ANACKER, H. et al. Pattern based engineering of system of systems - a systematic
literature review. In: 17th Annual System of Systems Engineering Confer-
ence (SOSE). [S.l.: s.n.], 2022. p. 178–183. Cited 4 times in pages 5, 11, 12,
and 15.

Apollo Graph Inc. Apollo GraphQL Documentation. 2024. <https://www.
apollographql.com/docs/>. Accessed: 2024-05-22. Cited in page 23.

BONDEL, G.; LANDGRAF, A.; MATTHES, F. Api management patterns for
public, partner, and group web api initiatives with a focus on collaboration.
Proceedings of the ACM on Programming Languages, ACM, v. 5, n.
OOPSLA, p. 1–28, 2021. Disponível em: <https://doi.org/10.1145/3489449.
3490012>. Cited in page 5.

BORGES, M. V. D. F.; ROCHA, L. S.; MAIA, P. H. M. Micrographql: a unified
communication approach for systems of systems using microservices and graphql.
In: 2022 IEEE/ACM 10th International Workshop on Software Engineering
for Systems-of-Systems and Software Ecosystems (SESoS). [S.l.: s.n.],
2022. p. 33–40. Cited 8 times in pages 11, 12, 13, 15, 16, 17, 18, and 44.

CÂNDEA, C.; CÂNDEA, G.; STAICU, M. Impact of iot and sos in enabling
smart applications: A study on interconnectivity, interoperability and quality of
service. Procedia Computer Science, v. 221, p. 1226–1234, 2023. Disponível
em: <https://doi.org/10.1016/j.procs.2023.08.110>. Cited 4 times in pages 11,
12, 13, and 15.

Docker, Inc. Docker Official Website. 2024. <https://www.docker.com/>.
Accessed: 2024-05-22. Cited in page 23.

Express.js. Express Documentation. [S.l.], 2024. Accessed: 2024-05-23.
Disponível em: <https://expressjs.com/en/4x/api.html>. Cited in page 23.

GraphQL Foundation. Introduction to GraphQL. 2024. <https://graphql.org/
learn/>. Accessed: 2024-05-22. Cited in page 7.

GROSMAN, J. Findpapers: A tool for helping researchers who are looking
for related works. 2024. <https://github.com/jonatasgrosman/findpapers>.
Accessed: 2024-05-22. Cited in page 10.

IZQUIERDO, Y. T. et al. Busca360: A search application in the context of top-
side asset integrity management in the oil gas industry. In: Anais do XXXIX
Simpósio Brasileiro de Bancos de Dados. Porto Alegre, RS, Brasil: SBC,
2024. p. 104–116. ISSN 2763-8979. Disponível em: <https://sol.sbc.org.br/index.
php/sbbd/article/view/30686>. Cited in page 21.

https://www.apollographql.com/docs/
https://www.apollographql.com/docs/
https://doi.org/10.1145/3489449.3490012
https://doi.org/10.1145/3489449.3490012
https://doi.org/10.1016/j.procs.2023.08.110
https://www.docker.com/
https://expressjs.com/en/4x/api.html
https://graphql.org/learn/
https://graphql.org/learn/
https://github.com/jonatasgrosman/findpapers
https://sol.sbc.org.br/index.php/sbbd/article/view/30686
https://sol.sbc.org.br/index.php/sbbd/article/view/30686


48

LI, H. et al. Ontology-based graphql server generation for data access and data
integration. Semantic Web, IOS Press, 2024. Disponível em: <https://doi.org/
10.3233/SW-233550>. Cited 8 times in pages 8, 11, 13, 15, 16, 17, 42, and 44.

LUNA, E. D. GraphQL Code Generator. GitHub, 2025. Accessed: 2025-01-29.
Disponível em: <https://github.com/Luna-v0/gql-code-gen>. Cited in page 22.

MERA, A. Q. na et al. Graphql: A systematic mapping study. ACM Comput.
Surv., v. 55, n. 10, p. 202:1–202:35, 2023. Cited in page 40.

MITTAL, S. et al. Autonomous and composable m&s system of systems with
the simulation, experimentation, analytics and testing (seat) framework. In: IEEE.
Proceedings of the 2020 Winter Simulation Conference. [S.l.], 2020. p.
2305–2316. Cited 3 times in pages 11, 12, and 15.

MOHSIN, A.; JANJUA, N. K. A review and future directions of soa-based soft-
ware architecture modeling approaches for system of systems. Service Oriented
Computing and Applications, Springer-Verlag London Ltd., part of Springer
Nature, v. 12, n. 3, p. 183–200, 2018. Disponível em: <https://doi.org/10.1007/
s11761-018-0245-1>. Cited 3 times in pages 11, 13, and 15.

NEUREITER, C. et al. Extending the concept of domain specific systems engineer-
ing to system-of-systems. In: IEEE. 2020 IEEE 15th International Conference
of System of Systems Engineering (SoSE). 2020. p. 391–396. Disponível em:
<https://ieeexplore.ieee.org/document/9130484>. Cited 4 times in pages 11,
13, 14, and 15.

OLSSON, T.; AXELSSON, J. Systems-of-systems and digital twins: A survey
and analysis of the current knowledge. In: IEEE. 2023 18th Annual System
of Systems Engineering Conference (SoSE). 2023. Disponível em: <https:
//doi.org/10.1109/SOSE59841.2023.10178527>. Cited 2 times in pages 5
and 11.

OpenAPI Initiative. OpenAPI Specification v3.1.0. 2024. <https://spec.
openapis.org/oas/latest.html>. Accessed: 2024-05-22. Cited in page 8.

PICKERING, N.; DUKE, M.; LIM, S. H. A time constrained system of systems
discovery process and canvas - a case study in agriculture technology focusing
on an automated asparagus harvester. In: IEEE. 2020 IEEE 15th International
Conference of System of Systems Engineering (SoSE). [S.l.], 2020. p. 67–74.
Cited 3 times in pages 11, 13, and 15.

RAMONELL, C.; CHACóN, R.; POSADA, H. Knowledge graph-based data in-
tegration system for digital twins of built assets. Automation in Construc-
tion, v. 156, p. 105109, 2023. Disponível em: <https://www.sciencedirect.com/
science/article/pii/S0926580523003692>. Cited in page 8.

RAMíREZ, S. FastAPI Documentation. 2024. <https://fastapi.tiangolo.com/
>. Accessed: 2024-05-22. Cited in page 23.

SHI, W. et al. A survey on edge computing for the internet of things. IEEE
Internet of Things Journal, IEEE, v. 3, n. 5, p. 637–646, 2016. Disponível em:
<https://ieeexplore.ieee.org/document/7030212>. Cited in page 5.

https://doi.org/10.3233/SW-233550
https://doi.org/10.3233/SW-233550
https://github.com/Luna-v0/gql-code-gen
https://doi.org/10.1007/s11761-018-0245-1
https://doi.org/10.1007/s11761-018-0245-1
https://ieeexplore.ieee.org/document/9130484
https://doi.org/10.1109/SOSE59841.2023.10178527
https://doi.org/10.1109/SOSE59841.2023.10178527
https://spec.openapis.org/oas/latest.html
https://spec.openapis.org/oas/latest.html
https://www.sciencedirect.com/science/article/pii/S0926580523003692
https://www.sciencedirect.com/science/article/pii/S0926580523003692
https://fastapi.tiangolo.com/
https://fastapi.tiangolo.com/
https://ieeexplore.ieee.org/document/7030212


49

The Guild. GraphQL Mesh. 2024. Accessed on 13 November 2024. Disponível
em: <https://the-guild.dev/graphql/mesh>. Cited in page 28.

WEINERT, B.; USLAR, M. Challenges for system of systems in the agriculture
application domain. In: IEEE. 2020 IEEE 15th International Conference of
System of Systems Engineering (SoSE). 2020. p. 355–360. Disponível em:
<https://ieeexplore.ieee.org/document/9130484>. Cited 4 times in pages 11,
13, 14, and 15.

https://the-guild.dev/graphql/mesh
https://ieeexplore.ieee.org/document/9130484


50

A
Appendix

A.1
JSON Input of the GraphQL Code Generator Service

Code 1: Sample JSON File

1 {

2 " atomic ": [

3 {

4 "type ": " openapi ",

5 "name ": " Algo360 ",

6 " source ": " openapi / Algo360 .json",

7 " endpoint ": "http :// localhost :8001"

8 },

9 {

10 "type ": " openapi ",

11 "name ": " Cronos ",

12 " source ": " openapi / Cronos .json",

13 " endpoint ": "http :// localhost :8002"

14 },

15 {

16 "type ": " graphql ",

17 "name ": " Environ ",

18 " endpoint ": "http :// localhost :8003" ,

19 " source ": ""

20 }

21 ],

22 " rename ": {

23 " getSetor ": "Setor"

24 },

25 " composed ": [

26 {

27 " operationType ": "UNIT UNIT UNION",

28 " queryName ": " getSetoresAtivo ",

29 " querySignature ": " getSetoresAtivo ( Setores_ID :[ String ])

:[ SetorAtivo ]",



51

30 " newType ": {

31 "name ": " SetorAtivo ",

32 "type ": {

33 " Setor_ID ": " String ",

34 " IRevest ": "Float",

35 " Volume_Setor ": "Float",

36 "tags ": "[ Tag ]"

37 }

38 },

39 " parameters ":"( Setor_ID :[ String ])",

40 "items ":{

41 "left ": {

42 "query ": {

43 " returnsList ": true ,

44 "name ": " getSetor ",

45 " params ":{

46 " Setor_ID ": " String "

47 },

48 " attributes ": [

49 " Setor_ID ",

50 " Volume_Setor ",

51 "tags{ dados_eng \ntag }"

52

53 ],

54 "key ": {

55 "path ": [

56 " Setor_ID "

57 ]

58 }

59 }

60 },

61 "right ": {

62 "query ": {

63 " returnsList ": false ,

64 "name ": " getSetores_setores_get ",

65 " params ":{

66 " Setor_ID ": " String "

67 },
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68 " attributes ": [

69 " Setor_ID ",

70 " IRevest "

71 ],

72 "key ": {

73 "path ": [

74 " Setor_ID "

75 ]

76 }

77 }

78 }

79 }

80

81 },

82 {

83 " operationType ": "LIST UNIT UNION",

84 " attributeName ": " SetoresAtivo ",

85 " queryName ": " getPlanosAtivo ",

86 " querySignature ": " getPlanosAtivo ( Planos_ID :[ String ]):[

PlanoAtivo ]",

87 " newType ": {

88 "name ": " PlanoAtivo ",

89 "type ": {

90 " Plano_ID ": " String ",

91 " Plano_Inspecao ": " String ",

92 " Setores ": "[ String ]",

93 " SetoresAtivo ": "[ Setor ]"

94 }

95 },

96 " parameters ": "( Plano_ID :[ String ])",

97 "items ": {

98 "left ": {

99 "query ": {

100 " returnsList ": true ,

101 " params ":{

102 " Plano_ID ": " String "

103 },

104 "name ": " getPlanos_planos_get ",
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105 " attributes ": [

106 " Plano_ID ",

107 " Plano_Inspecao ",

108 " Setores "

109 ],

110 "key ": {

111 "path ": [

112 " Setores "

113 ]

114 }

115 }

116 },

117 "right ": {

118 "query ": {

119 " returnsList ": false ,

120 "name ": " getSetores_setores_get ",

121 " params ":{

122 " Setor_ID ": " String "

123 },

124 " attributes ": [

125 " Setor_ID ",

126 " IRevest "

127 ],

128 "key ": {

129 "path ": [

130 " Setor_ID "

131 ]

132 }

133 }

134 }

135 }

136 }

137 ]

138 }
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